Evidence for housing improvements against malaria

Dr Lucy Tusting
MRC Research Fellow
Malaria Atlas Project, Oxford Big Data Institute
lucy.tusting@well.ox.ac.uk

Dr Samir Bhatt
Lecturer in Geostatistics
Director HIVE map project
Imperial College London
bhattsamir@gmail.com
Outline

1. Why is housing important for malaria?
2. Current evidence
3. How is housing changing across Africa?
Outline

1. Why is housing important for malaria?
2. Current evidence
3. How is housing changing across Africa?
The big picture

Malaria prevalence halved in endemic Africa, 2000-2015...

Bhatt et al. 2015 Nature 526: 2017-215
The big picture

Bhatt et al. 2015 Nature 526: 2017-215
Bednets, indoor house spraying and antimalarial drugs are highly effective...

Bhatt et al. 2015 Nature 526: 2017-215
The big picture

Bednets, indoor house spraying and antimalarial drugs are highly effective...

...But do not explain the whole story

Bhatt et al. 2015 Nature 526: 2017-215
The big picture

- Malaria control is linked to socioeconomic development
- Malaria affects the poorest communities
- Housing quality may part explain the relationship between malaria and poverty

Figure 1: Malaria burden and human development index for income and education in 43 countries in sub-Saharan Africa

Tusting et al 2013 Lancet; Tusting et al 2016 Infect Dis Poverty
Why is housing important for malaria?

- In Africa, *Anopheles* mosquitoes mainly bite indoors at night.
- So reducing house entry by mosquitoes can lower the risk of human malaria exposure.
- Protective features may include:
 - Closed eaves
 - Screened doors, windows
 - Ceiling
 - Metal not thatch roof

Lindsay et al 2002 Trends Parasitology

...It’s all about the eaves
Outline

1. Why housing for malaria control?
2. Current evidence
3. How is housing changing across Africa?
Outline

1. Why housing for malaria control?

2. Current evidence

3. How is housing changing across Africa?
Building the evidence

<table>
<thead>
<tr>
<th>1899</th>
<th>1900s to 1940s</th>
<th>WW2</th>
<th>1980s</th>
<th>1990s</th>
<th>2009</th>
<th>2015</th>
<th>2018</th>
</tr>
</thead>
</table>

Lindsay et al 2002 *Trends Parasitology*
Building the evidence

<table>
<thead>
<tr>
<th>1899</th>
<th>1900s to 1940s</th>
<th>WW2</th>
<th>1980s</th>
<th>1990s</th>
<th>2009</th>
<th>2015</th>
<th>2018</th>
</tr>
</thead>
</table>

Lindsay et al. 2002 *Trends Parasitology*
1899: Angelo Celli first demonstrates that house screening can reduce malaria incidence in Italy

Lindsay et al 2002 *Trends Parasitology*
1899: Angelo Celli first demonstrates that house screening can reduce malaria incidence in Italy

House screening shown to reduce malaria risk in India, South Africa and the USA

1899 | 1900s to 1940s | WW2 | 1980s | 1990s | 2009 | 2015 | 2018

Lindsay et al 2002 *Trends Parasitology*
WW2: Development of DDT; insecticide-based methods of malaria control take over, housing neglected

1899: Angelo Celli first demonstrates that house screening can reduce malaria incidence in Italy

House screening shown to reduce malaria risk in India, South Africa and the USA

Building the evidence

Lindsay et al 2002 *Trends Parasitology*
Building the evidence

1899: Angelo Celli first demonstrates that house screening can reduce malaria incidence in Italy

1988: House eaves shown to be important for mosquito entry in The Gambia (Lindsay and Snow)

WW2: Development of DDT; insecticide-based methods of malaria control take over, housing neglected

House screening shown to reduce malaria risk in India, South Africa and the USA

Lindsay et al 2002 *Trends Parasitology*
Building the evidence

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1899</td>
<td>Angelo Celli first demonstrates that house screening can reduce malaria incidence in Italy</td>
</tr>
<tr>
<td>1900s to 1940s</td>
<td>House screening shown to reduce malaria risk in India, South Africa and the USA</td>
</tr>
<tr>
<td>WW2</td>
<td>Development of DDT; insecticide-based methods of malaria control take over, housing neglected</td>
</tr>
<tr>
<td>1988</td>
<td>House eaves shown to be important for mosquito entry in The Gambia (Lindsay and Snow)</td>
</tr>
<tr>
<td>2009</td>
<td>First randomized controlled trial: house screening in the Gambia reduced child malaria anaemia by 47% (Kirby et al. Lancet)</td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
</tbody>
</table>

References:

- Lindsay et al. 2002. *Trends Parasitology*
Building the evidence

1899: Angelo Celli first demonstrates that house screening can reduce malaria incidence in Italy

1900s to 1940s

WW2: Development of DDT; insecticide-based methods of malaria control take over, housing neglected

1940s

1988: House eaves shown to be important for mosquito entry in The Gambia (Lindsay and Snow)

1980s

2009: First randomized controlled trial: house screening in the Gambia reduced child malaria anaemia by 47% (Kirby et al Lancet)

1990s

2015: systematic review
2017: cross-country analysis

2018

Lindsay et al 2002 Trends Parasitology
Current evidence
Current evidence

- Modern versus traditional housing:

- House screening versus no screening:
Current evidence

• Modern versus traditional housing:

• House screening versus no screening:

Current evidence

• Modern versus traditional housing:

• House screening versus no screening:

Current evidence

- **Modern versus traditional housing:**
 - 2015 systematic review: 47% lower odds of infection and 45-65% lower odds of clinical malaria (15 observational studies)
 - 2017 analysis of 29 African DHS/MIS surveys: 9-14% lower odds of infection (and 15-16% lower odds in ITN users vs non-users)

- **House screening versus no screening:**

- **Photos:** S Lindsay

Current evidence

• **Modern versus traditional housing:**
 • 2015 systematic review: 47% lower odds of infection and 45-65% lower odds of clinical malaria (15 observational studies)
 • 2017 analysis of 29 African DHS/MIS surveys: 9-14% lower odds of infection (and 15-16% lower odds in ITN users vs non-users)

• **House screening versus no screening:**

Current evidence

- **Modern versus traditional housing:**
 - 2015 systematic review: 47% lower odds of infection and 45-65% lower odds of clinical malaria (15 observational studies)
 - 2017 analysis of 29 African DHS/MIS surveys: 9-14% lower odds of infection (and 15-16% lower odds in ITN users vs non-users)

- **House screening versus no screening:**

Photos: S Lindsay

Current evidence

• **Modern versus traditional housing:**
 - 2015 systematic review: 47% lower odds of infection and 45-65% lower odds of clinical malaria (15 observational studies)
 - 2017 analysis of 29 African DHS/MIS surveys: 9-14% lower odds of infection (and 15-16% lower odds in ITN users vs non-users)

• **House screening versus no screening:**
 - 2015 systematic review: House screening reduced malaria anaemia by 47% (1 RCT) but inconsistent association with infection and incidence (4 observational studies; 1 RCT).

Photos: S Lindsay

Current evidence

- **Modern versus traditional housing:**
 - 2015 systematic review: 47% lower odds of infection and 45-65% lower odds of clinical malaria (15 observational studies)
 - 2017 analysis of 29 African DHS/MIS surveys: 9-14% lower odds of infection (and 15-16% lower odds in ITN users vs non-users)

- **House screening versus no screening:**
 - 2015 systematic review: House screening reduced malaria anaemia by 47% (1 RCT) but inconsistent association with infection and incidence (4 observational studies; 1 RCT).

- **Summary:** Most evidence is observational but the consistency of effects suggests housing is a promising malaria intervention

1. Why housing for malaria control?
2. Current evidence
3. How is housing changing across Africa?
Outline

1. Why housing for malaria control?

2. Current evidence

3. How is housing changing across Africa?
Housing is transforming in Africa

- Rapid population growth and urbanisation e.g. Africa’s population will increase from 1.2 billion in 2015 to 2.1 billion in 2050

- Alongside economic growth we are seeing incremental housing changes

- But can we quantify these?

Photos: S Lindsay
Acknowledgements

Oxford University
Peter Gething
Harry Gibson
Donal Bisanzio
MAP team

Durham University
Steve Lindsay

LSHTM
Christian Bottomley
Immo Kleinschmidt
Richard Smith

Royal Danish Academy of Fine Arts
Jakob Knudsen

UCSF
Grant Dorsey
Roly Gosling
Matthew Ippolito